

aulos

UNLOCKING CURATIVE POTENTIAL

A New Approach to Harnessing IL-2 to Fight Cancer

Aron Knickerbocker
President and CEO

Highly Differentiated Approach for Targeting IL-2 in Immuno-Oncology

ENABLED BY ARTIFICIAL INTELLIGENCE

 AU-007, a monoclonal antibody created by Biolojic Design's innovative artificial intelligence (AI) antibody design platform

FOCUSED APPROACH

- Addressing high unmet need in solid tumors
- Phase 2 (US and Australia)
- Safe and well tolerated
- Only IL-2 agent to lower Tregs
- Evidence of anti-tumor activity

POSITIONED FOR SUCCESS

- Accomplished and experienced leadership team
- \$60M in Total Series A funding from ATP
- Unique competitive advantages
- Multi-indication potential

IL-2: A HISTORICALLY ELUSIVE POWER
Potent Immune Attack and Memory Against Cancers

aulos

Why Is IL-2 So Compelling? When Proleukin® (Recombinant Human IL-2) Works, It Can Really Work, Leading to Durable, Complete Responses as a Single Agent

- Remarkable in its ability as a single agent to initiate an anti-tumor attack and generate immune memory of the tumor, sometimes leading to profoundly long-lasting complete responses
- Rarely used due to its significant toxicity that limits how much patients can receive, and likely constrains efficacy
- If IL-2's therapeutic index could be widened, Aulos believes that it has clinical potential akin to the PD-(L)1 checkpoint inhibitors

IL-2: Current Limitations

- Natural IL-2 is endogenously produced at low concentrations and suppresses, more than activates, the immune system because it binds to and activates regulatory T cells (Tregs), which express high-affinity receptors
- Therefore, effective treatment with IL-2 historically required very high doses to activate effector T cells, leading to an extremely toxic side effect profile, including:
 - Cytokine storms
 - Increased risk of pulmonary edema and blood vessel leakage
- IL-2 mimetics, variants, pegylated and fusion proteins
 - Create a **negative feedback loop:** the IL-2 mimetic triggers the secretion of more endogenous IL-2, tipping the balance and leading to **Treg expansion** and suppression of the very immune response that the treatment was meant to activate
 - Have an increased risk of immunogenicity (anti-drug antibodies)

IL-2 therapy has a poor safety profile and restricted efficacy in only a fraction of patients.

Klatzmann D et al., 2015

IL-2 IS A "DOUBLE-EDGED SWORD"

Both suppressing and activating the immune system with many therapeutic challenges

Aulos Accurately Predicted the Current Inadequacies of the IL-2 **Competitive Landscape**

Next generation IL-2 agents:

Have only been able to achieve very low IL-2 equivalent blood concentrations

Do not prevent the negative feedback loop to immunosuppressive Tregs, resulting in **Treg expansion**

Have demonstrated no or limited single-agent clinical activity, and weak or worse combination activity

AU-007, Human Monoclonal Antibody That Redirects IL-2 Best-in-Class Potential for Immune-Sensitive Solid Tumor Treatment

aulos

AU-007 mAb Mechanism of Action Unlike Any Other IL-2 Therapy in Development

Closer Look At Why AU-007's MOA Is Unique

The trimeric IL-2 receptor binds free IL-2 100 times more tightly than the dimeric receptor

While AU-007 inhibits signaling to Tregs, it still allows IL-2 to bind to cancer-fighting effector T cells and NK cells

Exogenous IL-2 Therapies, Even "Non-Alpha" Therapies, Lead to Production of Endogenous IL-2 by Activated Effector Cells

Drives expansion of immunosuppressive regulatory T cells via a **negative feedback loop** High dose of Treg cells proliferation exogenous IL-2 Effector Tregs DIMER cells RECEPTOR TRIMER RECEPTOR Newly secreted Newly secreted endogenous IL-2 IL-2 binding to Tregs

While AU-007 Reduces Peripheral Tregs ~50-70%, Competing Products All Drive the Expansion of Immunosuppressive Tregs

DRUG/PROGRAM	COMPANY	ISSUE(S)
THOR-707 Pegylated IL-2	Sanofi	After first dose: increased peripheral blood Tregs up to 3.5 times ¹
Bempegaldesleukin Pegylated IL-2	Nektar/BMS	27-fold increase in peripheral blood Tregs ²
ANV419 IL-2 fusion to antibody	Anaveon	~2-fold expansion of Tregs³
Nemvaleukin alfa IL-2 fusion to CD25	Mural (formerly Alkermes)	~2-fold expansion of Tregs ⁴
MDNA11 Albuminated IL-2 superkine	Medicenna	8.5-fold increase in peripheral blood Tregs ⁵
WTX-124 Masked IL-2	Werewolf	Tregs rise, fold change not reported ⁶
STK-012 Artificial cytokine mutein	Synthekine	5-fold increase in peripheral blood Tregs ⁷

One Treg
can inhibit ~10
cancer-fighting
effector
T cells⁸

AU-007 Uniquely Tips Balance Toward Immune Activation, Away From Immune Suppression by Blocking Negative Feedback Loop to Tregs

Rapidly Advancing Clinical Development of AU-007

aulos

Summary of Clinical Program and Recent Initiation of Phase 2

- Stable disease/objective response results in Proleukin® (aldesleukin)-containing arms (1B and 1C)
 - Profound tumor shrinkage in patient with metastatic melanoma who had progressed on two checkpoint inhibitor regimens
 - Tumor shrinkages also observed in NSCLC, renal cell carcinoma, bladder, head & neck (nasopharyngeal), colorectal
 - Additional anti-tumor activity seen since SITC Annual Meeting in November 2023
- Excellent safety profile; mostly low-grade AEs related to IL-2 MOA and evidence of immune activation
- Pharmacodynamic data show increased immune activation with addition of low-dose, subcutaneous Proleukin®
- Current status
 - Phase 2 cohort opened with single administration low-dose, subcutaneous of Proleukin[®]
 - Second-line melanoma and second-/third-line RCC
 - 9 mg/kg AU-007 plus single dose of Proleukin[®] at 135,000 IU/kg
 - Allows for additional dose(s) of Proleukin[®] upon tumor growth (boost dosing)
 - Phase 2 cohort opened with Q2W low-dose, subcutaneous Proleukin® regimen
 - Second-line melanoma and second-/third-line RCC
 - 9 mg/kg AU-007 plus Q2W Proleukin® at 135,000 IU/kg
- High enthusiasm and engagement from sites and investigators

Phase 1 Dose Escalation

Dosing began late Q2 2022

1C: AU-007 Q2W + IL-2 Q2W

Proleukin® (aldesleukin) will be administered subcutaneously, at much lower doses and much less frequently than the approved regimen (600,000 IU/kg every 8 hours for 14 administrations) of intravenously administered aldesleukin

Clinical Development: Speed to Proof of Concept Now Enrolling in Phase 2 in Melanoma and RCC With Two IL-2 Schedules

AU-007 Phase 1 Dose Escalation

Australia initially; IND cleared October 2022

Phase 2 Expansion Cohorts

Australia & US

Phase 1 Dose Escalation Data Presented at SITC 2023: Safety by Type of Adverse Event

Drug-related AEs in > 5% of patients n=42					
Adverse Event	Grade 1 or 2 n (%)	Grade 3 or 4 n (%)			
Fatigue	7 (17)	0			
Nausea	6 (14)	0			
Pyrexia	5 (12)	0			
Chills	4 (10)	0			
Vomiting	3 (7)	0			
Lymphopenia	0	3 (7)			

^{• 1} patient with Grade 3 lymphopenia, 2 with Grade 4 – all transient (3-7 days)

All drug-related AEs were Grade 1 or 2 except for 3 patients receiving AU-007 + aldesleukin with transient (3-7 day) Grade 3 or 4 lymphopenia that were not associated with adverse outcomes. Transient lymphopenia is a known effect of IL-2 treatment as lymphocytes traffic out of blood and into tissue.

No patients discontinued for a drug related adverse event; no DLTs observed.

[•] No DLTs; 1 Related SAE - Grade 2 cytokine release syndrome (CRS) in Arm 1C Cohort 3

Phase 1 Dose Escalation: AU-007 + Proleukin®: Best Response in Immune-Sensitive Tumors

ALL RESPONSE EVALUABLE PATIENTS EXCLUDING PANCREATIC CANCER WHO RECEIVED AU-007 + PROLEUKIN® AU-007 + Proleukin® Loading Dose (N=9) AU-007 + Proleukin® Q2W (N=13)

Not shown on graph:
Patient with bladder
cancer with nonmeasurable disease
(non-target lesions only)
whose cancerthickened bladder wall
has thinned
substantially. Patient is
in 1B cohort that
received 4.5 mg/kg AU007 + one dose of 45K
IU/kg IL-2 and remains
on study.

AU-007 + Proleukin®: Percentage Change vs. Baseline Over Time

SITC 2023: 40% Tumor Shrinkage in the Target Lesions of a Patient Whose Melanoma Progressed Through Prior Anti-PD-1 + CTLA4 Therapy

- 62-year-old man with progression in the liver, December 2022
- February 2023, initial Q2W AU-007 (4.5 mg/kg) dose + one (and only) 15K IU/kg Proleukin® dose administered
- Initial portacaval LN growth with necrotic center followed by stabilization may represent pseudoprogression

SITC 2023: 20% Tumor Shrinkage in First 8 Weeks in the Target Lesions of a Patient Whose RCC Progressed Through Prior Anti-PD-1 Therapy

- 68-year-old man progressed on anti-PD-1 treatment June 2022
- July 2023, initial AU-007 (4.5 mg/kg) + 15K IU/kg Q2W Proleukin[®]
- The primary renal cancer remains in situ and was stable

Pharmacodynamics: AU-007 Continues to Demonstrate Decrease in Tregs at Any Proleukin® IL-2 Dose Level

Completely unique profile in the IL-2 therapeutic class

AU-007 Dose Escalation: Peripheral CD8 Cell Increases by Study Arm

X axis = Days

AU-007 Dose Escalation: Peripheral NK Cell Increases by Study Arm

AU-007 Dose Escalation: Strong Increase in CD8+/Treg Ratios, Distinct in the IL-2 Class

X axis = Days

Average Fold Change in IFN-γ From Dose Escalation Cohorts With 1B (Single) or 1C (Every Two Weeks) Dose Schedule of Proleukin®

AU-007 PK Data Demonstrates IgG1 Therapeutic Characteristics

PK data continues to demonstrate dose proportionality and accumulation; half-life > 14 days

- 0.5 mg/kg n=2
- 1.5 mg/kg n=3
- **★** 4.5mg/kg n=23
- **▼** 9mg/kg n=4
- ◆ 12 mg/kg n=3

Cmax and step close to predicted

Dose	Est Cmax (70kg)	Step	Actual Cmax (μg/ml)	Calculated Step
0.5	14 μg/ml		10.8+/-16	
1.5	42 μg/ml	3	29.6+/-13	2.75
4.5	126 μg/ml	3	110+/-15	3.7
9	252 μg/ml	2	255+/-21	2.3
12	336 μg/ml	1.3	282+/-9	1.5

AU-007 PK and IL-2 Coverage (For Binding and Redirecting IL-2 to Dimeric Receptors on Effector Cells)

AU-007 Dose mg/kg	Time Point	Serum AU-007 ug/ml	Serum IL-2 Coverage pM	Coverage of Phase 2 IL-2 Dose (Proleukin® 135K IU/kg)
	Initial Peak	11	150685	754 x
0.5	Initial Trough	4.3	58904	294 x
	Steady State Average	12	164384	822 x
	Initial Peak	30	410959	2054 x
1.5	Initial Trough	9.8	134247	672 x
	Steady State Average	32	438356	2192 x
	Initial Peak	110	1506849	7534 x
4.5	50 Hours	85	1164384	5822 x
	Steady State Average	94	1287671	6438 x
	Initial Peak	255	3493151	17466 x
9	50 Hours	169	2315068	11576 x
	Steady State Average	192	2630137	13150 x
12	Initial Peak	282	3863014	19316 x
	50 Hours	184	2520548	12602 x
	Steady State Average	256	3506849	17534 x

AU-007 Has Unique Potential to Solve the Challenges of IL-2 by Acting as a Router for IL-2, Redirecting It Toward Effector Cells

Computationally designed, epitope-specific monoclonal antibody therapeutics directing native IL-2 cytokine to specific target cells (drives expansion of effector T cells and downregulation of Tregs)

Potential for higher efficacy, based on unique MOA Only agent in class that lowers Tregs

Potential for lower toxicity — by blocking IL-2's binding to vascular endothelium

Unique antibody computationally designed by world-class machine learning

Known modality; a well-behaved antibody format with drug-like properties

AULOS

Positioning for Success

aulos

At Aulos, our mission is to extend and improve the lives of patients through innovative, safe and effective cancer immunotherapy

Our Values

INGENUITY

We bring a spirit of ingenuity to what we do.

BALANCE

We are a balanced organization that pursues the best idea.

GROWTH

We are committed to grow individually and as a team.

HOPE

We aspire to provide hope to patients and their loved ones with novel therapy.

SUPPORT

We support each other and collaborate efficiently.

Accomplished, Experienced Leadership Team

Aron Knickerbocker President and Chief **Executive Officer**

Yanay Ofran Chief Scientific Officer

Jim Vasselli, M.D. **Chief Medical** Officer

Micah Pearlman **Chief Operating** Officer

Leo Redmond Chief Financial Officer

Tim Wyant SVP and Head of Early Development

Jenny Tang Head of Clinical **Operations**

Distinguished Board of Directors

Mike Ehlers, M.D., Ph.D., Chairman

CSO and Venture Partner, ATP Seth Harrison, M.D.

Founder and Managing Partner, ATP Raj Chopra, M.D., Ph.D.

Venture Partner, ATP

Anna Batarina

Partner, ATP Mace Rothenberg, M.D.

Former Chief Medical Officer Yanay Ofran, Ph.D., CSO

Founder and Chief Scientific Officer

Aron Knickerbocker, CEO

Chief Executive
Officer

AU-007 Value-Driven Milestones

✓ Initiated Dosing in Phase 1 in Australia	2Q 2022
✓ Received FDA Clearance of IND Application	4Q 2022
✓ Began Dosing Patients at US Clinical Sites	1Q 2023
✓ Began Phase 2 Dosing in Expansion Cohorts in Melanoma and Renal Cell Carcinoma	1H 2024
Begin Phase 2 dosing in expansion cohorts in non-small cell lung cancer	2H 2024
Establish Phase 2 clinical proof of concept in melanoma and renal cell carcinoma	2H 2024
Establish Phase 2 clinical proof of concept in non-small cell lung cancer	1H 2025
Seek Breakthrough Designation, begin pivotal trial(s) in melanoma, RCC and/or NSCLC	2025
Initiate Phase 2 trials in additional indications, as warranted	2025
Submit marketing approval applications globally	2027-2028
First commercial sales	2027-2029

A safe and broadly applicable IL-2 regimen has been a "holy grail" of cancer immunotherapy.

If achieved, AU-007 would likely represent the next multi-indication blockbuster cancer immunotherapy – a pipeline in a product.

aulos

AU-007: A Compelling New Approach for Harnessing IL-2 to Fight Cancer

COMPUTATIONALLY
DESIGNED
HUMAN IgG1 mAb

HARNESSES THE POWER OF REDIRECTING IL-2 AND OFFERS DEVELOPABILITY WITH DRUG-LIKE PROPERTIES TIPS THE
BALANCE
TOWARD IMMUNE
ACTIVATION

SHUTS DOWN
NEGATIVE
FEEDBACK LOOP
AND PREVENTS IL-2
FROM BINDING
TO VASCULATURE,
INCREASING
SAFETY

NO OTHER IL-2 THERAPEUTIC IN DEVELOPMENT DOES THIS CLINICAL
DATA SHOW
UNIQUE TREND IN
DECREASING
TREGS

aulos

THANK YOU

www.aulosbio.com

APPENDIX

aulos

Competitive Differentiation

	Full blockage of IL-2 binding to CD25	Prevent Treg expansion and binding to vascular endothelium	Avoid negative feedback from endogenous IL-2	Human IgG1 mAb: Good PK, Iow potential for immunogenicity
aulos	✓	✓		✓
High dose IL-2	X	X	X	X
Modified IL-2	x /~	x / 🗸	X	X
Fusion proteins (incl. mAbs)	x / 🗸	x / 🗸	X	x / 🗸

Aulos' approach to IL-2 modulation addresses challenges

Why Is IL-2 So Compelling? Higher Endogenous IL-2 Levels in Cancer Patients Correlate With Improved Survival

Computational Design for Precise Blocking of IL-2's Binding to Alpha (CD25) Receptor Subunit Contained in Trimeric Receptors on Tregs, Vasculature and Eosinophils

AU-007 Design

AU-007 Function

APRIL 2024

Biolojic Design

Phase 1 Dose Escalation: AU-007 + Proleukin®: Best Response vs. Baseline

Phase 1 Dose Escalation: AU-007 + Proleukin®: Best Response in Immune-Sensitive Tumors

ALL RESPONSE EVALUABLE PATIENTS EXCLUDING PANCREATIC CANCER WHO RECEIVED AU-007 + PROLEUKIN® Dose Escalation: Arm B – Single Proleukin® Dose ■ Stable Disease 70 Progressive Disease 64 **Continues Trial** 60 Patient received one Best change from baseline (%) Proleukin® dose after starting on AU-007 monotherapy 20 -10 Not shown on graph: Patient with -13 bladder cancer with non-measurable disease (non-target lesions only) whose cancer-thickened bladder wall -30 has thinned substantially. Patient is in 1B cohort that received 4.5 mg/kg -40 AU-007 + one dose of 45K IU/kg IL-2 and remains on study. -48 CRC NSCLC **HNSCC** Cholagio Acral Bladder NSCLC Melanoma Melanoma

Phase 1 Dose Escalation: AU-007 + Proleukin®: Best Response in Immune-Sensitive Tumors

AU-007 + Proleukin®: Percentage Change vs. Baseline Over Time

Transient Lymphopenia Is a Known Phenomenon for Patients Receiving Proleukin®, and Likely Represents Trafficking of Lymphocytes From Vasculature Into Tissue

AU-007 Dose Escalation: Fold Change in the Expression of IFN-γ Seen With 1B (Single) or 1C (Every Two Weeks) Dose Schedule of Proleukin®

		1.2-1.9	2-4.9	9 5	-9.9	10-19.9	20-29.9	>=	30		
ARM 1B COHORTS				ARM 1C COHORTS							
	n=1	n=6	n=1	n=3		n=4	n=7	n=3	n=6		n=2
	4.5+15 B	4.5+45 B	4.5+135 B	4.5+270 B		4.5+15 C	4.5+45 C	4.5+135 C	9+135 C	4.5+270 C	9+ 270 C
Cycle 01 D01 pre	0	0	0	0		0	0	0	0		0
Cycle 01 D01 2	1.00	0.98759941	0.85	0.8924958		0.95724503	1.17910239	1.00631852	0.97537849		1.05385159
Cycle 01 D01 6	1.81	2.04704305	0.73	13.3529622		1.23242873	2.72299319	9.00061479	16.9887697		15.0883358
Cycle 01 D02	2.02	2.92940407	0.62	17.5130242		1.66302951	3.64632084	11.457194	21.9618471		23.8193461
Cycle 01 D03	1.00	5.89333482	13.70	15.1453405		3.556146	3.33699867	7.80647061	23.26		15.6319394
Cycle 01 D15 pre	15.12	1.66718541	0.88	4.15219117		1.82456768	0.54924948	1.4667106	1.76543792		3.42362614
Cycle 01 D15 EOI	15.41	1.64872266	1.06	4.09501055		1.73066408	0.59197037	1.30745646	3.65307287		3.80382744
Cycle 01 D15 6	1.35	2.23719313	1.27	3.99271078		2.022752	1.07169544	10.2062331	32.07722		25.6204331
Cycle 01 D29 pre	9.85	1.11074958	0.60	1.14956565		1.86819275	1.19588267	1.66456925	1.4474057		4.84636234
Cycle 01 D29 EOI	6.41	1.08402435	0.48	0.93530442		1.69443551	0.93774652	1.59492073	1.50223337		3.81382846
Cycle 01 D43 pre	18.51	1.28777381	0.44	1.25239518		3.18015095	2.65207568	1.76904202	1.50483142		7.38370078
Cycle 01 D43 EOI	19.75	1.20474384	0.46	1.14495605		2.80098741	3.90477915	1.72423734	2.01622352		6.45842997
Cycle 02 D01 pre	10.77	0.98407841	0.42	2.84352208		1.31927694					
Cycle 02 D01 EOI	10.49	0.81894179	0.35	2.75916103		1.26925917					
Cycle 02 D015 pre	15.15	1.47826372		11.4714008		0.90904367					
Cycle 02 D015 EOI	13.55	1.30800544		10.3230562		0.78734925					
Cycle 02 D43 pre	1.62	1.01555418				1.87510597					
Cycle 02 D43 EOI	1.57	1.09895619				2.02969891					
Cycle 03 D01 pre	1.34	27.4402898									
Cycle 03 D01 EOI	1.10	26.6645722									
Cycle 4 D01 pre	0.83	0.85444994									
Cycle 4 D01 EOI	0.71	0.97301195									

A heat map of the change from baseline in the circulating levels of IFN-γ. Light green represents a 0.2- to 1.9-fold change, mid-green a 2- to 4.9-fold change, light red a 10- to 19.9-fold change, mid-green a 2- to 4.9-fold change, mid-green a 2- to 4.9-fold change, light red a 10- to 19.9-fold change, mid-green a 2- to 4.9-fold change, mid-green a 2- to 4.9-fold change, mid-green a 2- to 4.9-fold change, light red a 10- to 19.9-fold change, mid-green a 2- to 4.9-fold change, mid-green a 2- to 4.9-fold change, mid-green a 2- to 4.9-fold change, light red a 10- to 19.9-fold change, mid-green a 2- to 4.9-fold change, mid-green a 2- to 4.9-

AU-007 Dose Escalation Study: Change in Eosinophils (Cells That Also Express the Trimeric IL-2 Receptor That Contains CD25)

Changes over time in the circulating number of eosinophils. Panel A are the cohorts receiving only AU-007 monotherapy and panel B are cohorts receiving AU-007 with at least 1 dose of Proleukin®. All but one patient in the AU-007 monotherapy and AU-007 with Proleukin® arms demonstrated a decrease or no change in the circulating levels of eosinophils. A patient in the 9 mg/kg cohort had severe seasonal allergies requiring treatment during time on AU-007 treatment and is consistent with a history of being treated for seasonal allergies. The rise in eosinophils was attributed to the allergy reaction. All patients given AU-007 with Proleukin® showed stable or a decrease in circulating eosinophils. This is consistent with the mechanism of action of AU-007 preventing IL-2 from interacting with the IL-2 trimeric receptor on eosinophils.

In Mice, AU-007 Promotes Dose-Dependent Expansion and Activation of Effector T and NK but Not Treg Cells *In Vivo*

- Splenocytes isolation
- Flow cytometry

Aulos' IL-2 mAbs Show Inhibition of Tumor Growth in Mouse Syngeneic Tumor Model Resistant to Checkpoint Inhibitors (B16F10 Melanoma)

AU-007 Induces Regressions and Some Tumor Eradications in MC38 Colon Cancer Model in Wild-Type Mice When Combined With Anti-PD-(L)1

Clinical Evidence of the Negative Feedback Loop in Action: THOR-707 Increases Peripheral Blood Tregs ~2-3x After First Dose

AACR 2021, Phase 1/2

Pharmacodynamic Markers of Not-Alpha Selectivity

Second *In Vivo* Proof of Negative Feedback Loop in Action: Bempegaldesleukin

27-fold increase in peripheral Tregs with Bempeg

Substantial expansion of Tregs and low delivered doses of IL-2 likely accounts for poor clinical data observed to date with pegylated IL-2 constructs, and the failure in multiple Phase 3 trials

Third *In Vivo* Proof of Negative Feedback Loop in Action: Anaveon's ANV419

Half-life of ANV419 in cynomolgus monkeys is ~24 hours Half-life of AU-007 in cynomolgus monkeys is ~15 days

Fourth *In Vivo* Proof of Negative Feedback Loop in Action: Alkermes' Nemvaleukin Alfa

Fifth *In Vivo* Proof of Negative Feedback Loop in Action: Medicenna's MDNA11

Following the very first dose of MDNA11,
Tregs begin to rise

Y-axis scaling obscures the significant fold increase in Tregs elicited by MDNA11

IL-2 equivalent amounts delivered by second generation ("non-alpha") agents is very low

aulos

IL-2 Equivalent Amounts Delivered by Second Generation, "Non-Alpha" Agents Is Actually Very Low, and Correlates With Clinical Efficacy

MILLIONS OF INTERNATIONAL UNITS (IU) DELIVERED PER 2- OR 3-WEEK CYCLE

Modeling suggests that AU-007 will deliver as much or more IL-2 to effector T cells and NK cells as Proleukin[®], while redirecting IL-2 away from Tregs, pulmonary endothelium, vasculature and eosinophils

